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Abstract
Previous models of the surface structure of ferroelastic domain walls have
neglected one potentially important consideration. This is the effect of a volume
strain coupled to the order parameter. Such a coupling affects the structure of
the domain wall both in the bulk and at the surface. In the bulk only certain
components of the strain tensor can relax in response to the stresses generated
within the domain wall by this coupling without disrupting the continuity of the
lattice. However, at the surface a more general relaxation is possible. This has
an asymmetric effect on the domain wall surface structure, causing it to widen
at one surface and narrow at the opposite surface.

1. Introduction

Domain walls occur in many technologically important materials, including ferroelectrics and
high temperature superconductors. One important application of domain wall research may
be the formation of nanoscopic structures in which dopants are confined to two-dimensional
regions by twin walls, as observed experimentally in Na doped WO3, in which the doping
produced two-dimensional superconducting regions inside the domain walls (Aird and Salje
1998, 2000). Obviously the structure of domain walls at the surface will strongly affect the
absorption of dopants, so an understanding of the surface structure of domain walls is very
important for such applications.

Two previous studies of the surface structure of domain walls have been carried out
(Novak and Salje 1998, Conti and Salje 2001). These studies predicted that a domain wall
would widen at a surface. However neither study included the effect of couplings between the
order parameter (a shear strain) and the dilatational strains. Here we report the results of an
investigation into the effect such a coupling has on the surface structure of the domain wall.
The results are significantly different from those previously obtained.
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Table 1. Interactions in the Novak–Salje model. The first neighbour interaction keeps the values of
the a and b lattice parameters close to their bulk values. The second neighbour interaction makes
the equilibrium value of the order parameter ε12 non-zero and the third neighbour interaction makes
sure that the domain walls have finite widths.

Type of potential

〈10〉 First neighbour Harmonic
〈11〉 Second neighbour Lennard-Jones
〈20〉 Third neighbour Lennard-Jones

The study of Novak and Salje was numerical and consisted of a two-dimensional, square
lattice of points which was subjected to potentials causing it to go through a phase transition,
the order parameter of which was the shear strain ε12. The functional form of the interaction
potentials is given in table 1.

The harmonic potential was chosen to be very strong compared to the Lennard-Jones
potential, in order to make the ε11 and ε22 strains zero. A (01) domain wall was investigated
with (10) surfaces, i.e. the domain wall was orthogonal to the surfaces. The observed surface
structure of the domain wall was a widening of the domain wall close to both free surfaces. The
physical origin of this widening was that the ideal surface value of the strain ε12 was different
from the ideal bulk value. The relaxation of the surface order parameter profile caused a
widening of the domain wall.

Conti and Salje (2001) formulated an analytic analogue of the system studied by Novak
and Salje. They linearized the system by performing a Taylor expansion of the free energy
about each minimum separately. Their bulk free energy per unit area was

FB = a

2
(ε12 ± θ)2 +

b

2
(ε2

11 + ε2
22) + α|∇2u|2 (1)

with the ± sign taking opposite values on either side of the domain wall. θ is the bulk value
of the shear strain and order parameter in each phase and u is the displacement field.

Their surface free energy per unit length was

FS = c

2
(ε12 ± φ)2 (2)

where φ is the value of the surface order parameter far from the wall.
The minimization of the above free energy with the boundary condition ε12 = 0 at the

centre of the domain wall gives results similar to those obtained by the numerical simulation
of Novak and Salje but allowed for a wider exploration of parameter space.

The two models described above neglect an important consideration in determining the
bulk and surface structure of domain walls. This is the possibility of coupling terms in the
free energy between the dilatational strains ε11 and ε22, and the order parameter ε12. From the
symmetry of the high temperature phase the lowest order coupling term must be quadratic in the
order parameter and linear in the dilatational strains. The effects of this coupling are excluded
from both the model of Novak and Salje, and the model of Conti and Salje. In the Novak–Salje
model the coupling does exist,but the harmonic interactions are so strong that this coupling term
has no measurable effects. In the Conti–Salje model the expansion of the free energy in terms of
the strains is only taken to second order, thus the coupling term,which is third order, is excluded.

The aim of this study is to investigate the effect of this coupling term on the surface structure
of the domain wall. Therefore we consider a numerical model similar to the Novak–Salje model
but with the nearest neighbour interaction strength reduced to a physically reasonable value.
The parameters of the system are adjusted so that the ideal bulk and surface values of the
order parameter are as close to each other as possible, so that the mechanism of domain wall
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widening seen in the two models discussed above will not operate and only the effect of the
coupling will be observed. In general, of course, both mechanisms will operate together.

The results of the numerical simulations are different from those observed in the Novak–
Salje and the Conti–Salje models. In this case the three components of the two-dimensional
strain tensor take non-zero values. The domain wall widens at one surface and narrows at the
other surface. This is different from the results of the previous two studies where the strain
profile of the domain wall is symmetrical at the two surfaces.

The physical origin of the surface relaxation of the domain wall is as follows. The coupling
between the dilatational strains and the order parameter can be considered as a domain wall
pressure; i.e. when the value of the order parameter deviates from its ideal bulk value there is
a resulting internal pressure (the pressure can be positive or negative, depending on the sign
of the coupling). Far from a free surface only the component of the strain perpendicular to the
surface can relax: if the dilatational strain parallel to the domain wall deviates from its bulk
value the continuity of the crystal structure will be disrupted. So in the bulk of the crystal the
order parameter ε12 takes the hyperbolic tangent form for an order parameter across a domain
wall. Inside the domain wall the strain ε11 takes a non-zero value, but the strain ε22 remains
zero, despite the fact that the domain wall pressure is isotropic.

What happens at the surface may be considered in perturbation theory, where the
small parameter is the coupling coefficient. To first order the domain wall pressure causes
displacements of the atoms perpendicular to the surface. This makes the surface value of ε22

non-zero, but symmetrical with respect to the two surfaces. However, because the magnitude
of the displacement perpendicular to the surface depends on the coordinate parallel to the
surface, the displacement perpendicular to the surface also affects ε12. In fact the effect is to
make ε12 asymmetrical at the two opposite surfaces.

In second order perturbation theory, because ε12 has been changed, the domain wall
pressure is also changed. The resulting domain wall pressure is asymmetrical and thus ε11 and
ε22 become asymmetrical as well as ε12. Therefore the effect of a coupling between the order
parameter and the dilatational strain is to produce an asymmetric domain wall profile, with all
the components of the strain tensor showing different behaviours at opposite free surfaces.

The rest of the paper is divided into three sections. In the first of these sections we describe
a numerical investigation into the surface structure of domain walls with coupling between the
dilatational strain and the shear strain. The model used is similar to the Novak–Salje model
but with different interactions. In the next section we describe an analytic investigation of the
simplest possible free energy functional which describes the system. The first order form of
the surface profile can be calculated from such a free energy, but the second order correction
is too complicated. Instead we approximated the system by an isotropic elastic medium with
surface forces acting upon it. This model qualitatively reproduces the domain wall profile
given by the numerical calculations.

2. Numerical studies of the surface structure of the domain wall

In this section we describe our numerical investigation of a system with coupling between
the order parameter and dilatational strains. An investigation of such a system with no free
surfaces has been carried out by Lee et al (2001) with the aim of determining the effect of the
domain wall structure on the transport properties. The model consists, in its high temperature
form, of a tetragonal lattice with the a and c lattice parameters set equal. The forms of the
interaction parameters are as given in table 2.

Only one of the interactions is anharmonic: the minimum necessary for a phase transition
to occur. The coupling of the strains ε12 and ε11 and ε22 is proportional to q3. At the surface
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Table 2. Interactions used in the numerical model. As can be seen nearly all the interactions used
are harmonic. Only the second neighbour interaction is anharmonic: at least one interaction must
be anharmonic or the system will not have a phase transition.

In plane interactions

〈100〉 Harmonic f100 = k1

2
(r − a1)

2

〈110〉 Anharmonic f110 = − q2

2
(r − √

2)2 +
q3

3
(r − √

2)3 +
q4

4
(r − √

2)4

〈200〉 Harmonic f200 = k3

2
(r − a3)

2

Out of plane interactions

〈001〉 Harmonic f001 = k1

2
(r − 1)2

〈101〉 Harmonic f101 = k1

2
(r − √

2)2

Table 3. Values of the parameters of the interaction functions used in the numerical study.

Coefficient Value

k1 50.0
k3 −0.665
q2 2.500
q3 −200.0
q4 1.82 × 103

a1 (bulk) 0.830
a1 (surface) 0.912
a3 −4.920

a different value of a1 is used for the [010] interaction so that the ideal surface value of ε12 is
the same as the ideal bulk value. The numerical values of the coefficients used are given in
table 3.

The system size was 20 by 40 by 5 atoms. Periodic boundary conditions were employed
except at the free surfaces. The relaxed configuration of half the system is shown in figure 1.
A schematic diagram of the system is shown in figure 2, indicating the part of the system used
to generate plots. Plots of the components of the strain tensor are shown in figure 3. Instead of
showing two ends of a domain wall these plots show two adjacent domain walls intersecting
the same surface. These show clearly that the strain profiles of the two domain walls are quite
different.

Figure 4 shows graphs of ε11, ε22 and ε12 at the surfaces and in the centre of the system.
These clearly show the asymmetrical change in shape of the domain wall at each surface: one
domain wall widens close to the surface and the other narrows.

3. Analytical investigation of the surface structure of the domain wall

To check our understanding of the mechanism of asymmetric domain wall formation we
investigated the simplest possible free energy per unit length that reproduced the numerical
results. This was

F =
∫ [

− A

2
ε2

12 +
1

4
ε4

12 +
B

2
(ε2

11 + ε2
22) + λε2

12(ε11 + ε22) +
1

2

(
∂ε12

∂x

)2]
d2r. (3)
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Figure 1. This shows the configuration of half the system. The upper edge is a free surface but
the lower edge lies within the bulk. The system has two vertical domain walls. The x-axis is
horizontal; the y-axis is vertical.

Figure 2. The system we investigated consisted of a ferroelastic lattice with two domain walls
(bold lines). Only the half of the system above the dotted line is shown in the figures.

There are many terms which are required by symmetry in equation (1) which have been omitted
for simplicity. Even so we were only able to calculate the domain wall profile from it to first
order in perturbation theory. Since the second order term was necessary to obtain results
qualitatively similar to those seen in the numerical simulations a different method had to be
adopted to calculate these.

The elements of the stress tensor can be calculated from this free energy by σi j = δF/δεi j .
The equations describing the equilibrium of the bulk in the absence of body forces are
0 = ∂σi j/∂r j (Landau and Lifshitz 1986). If there is a free surface, with unit normal n,
the boundary conditions are 0 = n jσi j .
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(a) ε11 (b) ε22 (c) ε12

Figure 3. Strains in the configuration shown in figure 1. These clearly show that the two surface
structures of the domain wall are not equivalent.
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Figure 4. Strains at the surface and in the domain wall. Boxes correspond to the surface and
diamonds to the bulk. These plots show that the domain wall widens at one surface and narrows at
the other.

Firstly we consider the case of a domain wall parallel to the y-axis, with no free surfaces.
In this case the solutions to the bulk equilibrium equations are, to lowest order in the coupling
constant λ,
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εb
11 = −λA

b
tanh2

(
x

w

)

εb
22 = −λA

B

εb
12 = √

A tanh

(
x

w

) (4)

where w = √
2/A. The only element of the stress tensor that is non-zero in this case is σ22

which is

σ22 = Aλ tanh2
(

x

w

)
. (5)

This stress does not cause any displacements at the bulk but at the surface it will cause
displacements. To determine these we solve the equilibrium equations to first order in lambda
with one free surface. We assume that the solution is separable, and solve the resulting equations
in the region close to the domain wall. That is, we write for the additional displacement due
to the presence of the surface ux(x, y) = ux

x(x)uy
x(y) and uy(x, y) = ux

y(x)uy
y(y). Then the

components of the strain tensor become

ε11 = εb
11 +

∂ux
x(x)

∂x
uy

x(y)

ε22 = εb
22 + ux

y(x)
∂uy

y(y)

∂y

ε12 = εb
12 +

(
ux

x(x)
∂uy

x(y)

∂y
+

∂ux
y(x)

∂x
uy

y(y)

)
.

(6)

The surface equations can be solved to give ux
x(x) and ux

y(x). To obtain uy
x(y) and uy

y(y) and
make the separable solution valid we solve the bulk equations in the limit of small x . Therefore
the solutions obtained in this way are valid close to the surface and close to the domain wall.
We also made use of the fact that for a system which undergoesa shearing ferroelastic transition
a � b.

The resulting values of the elements of the strain tensor are

ε11 = εb
11 − A

2B(3A + 4B)

[
4B exp

(
−2y

√
2B

3

)
+ 3A exp

(
−Ay

√
3

2

)]

×
[

3 tanh2

(
x

w

)
− 1

][
tanh2

(
x

w

)
− 1

]

ε22 = εb
22 − A

2B(3A + 4B)

[
3A exp

(
−2y

√
2B

3

)
+ 4B exp

(
−Ay

√
3

2

)]

×
[

tanh2

(
x

w

)
− 1

]

ε12 = εb
12 −

√
A(16B2 + 9a2)

2
√

3B3(3A + 4B)

[
exp

(
−2y

√
2B

3

)
+ exp

(
−Ay

√
3

2

)]

×
[

tanh2

(
x

w

)
− 1

]
tanh

(
x

w

)
.

(7)

These results are not qualitatively similar to the numerical results. The strains ε11 and ε22

remain symmetrical and only the shear strain ε12 becomes asymmetric. The resulting strains
at the surface are shown in figure 5. The values of the parameters used are A = 1, B = 10
and λ = −1.5.
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(a) ε ε

ε

11 (b)      22

(c) 12

–1.5

–1

– 0.5

0

0.5

1.5

1.5

Figure 5. Strains at the surface and in the bulk calculated from equation (7). Dotted curves give the
bulk values and the solid curve gives the surface value. Only the asymmetry in ε12 is reproduced.
The asymmetry in ε11 and ε22 must be given by higher order perturbation theory.

Table 4. Forces, and points of action of the forces, shown in figure 6. x is the horizontal coordinate
of the point of action of the force, relative to the centre of the domain wall. F/E is the magnitude
of the force divided by the Young’s modulus of the material. f1–4 are vertical and have the same
sign in each domain wall. f5 is horizontal and has opposite signs in the two domain walls.

x F/E

f1 0 0.50
f2 0.5 0.25
f3 1.0 0.07
f4 1.5 0.03
f5 0.5 1.0

Now that the strain ε12 is asymmetric it is clear that at the next order of perturbation
theory the coupling between ε12 and ε11 and ε22 will ensure that ε11 and ε22 are asymmetrical.
Unfortunately calculating the second order of perturbation theory proved too complicated so
we resorted to an alternative means of calculating the surface strains.

We replaced the system by an isotropic elastic medium, and replaced the effects of the
internal stresses by forces acting on the surface. How this is done is shown in figure 6. The
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Figure 6. Diagram showing the forces and their points of application used in calculating the second
order strains.

system with the bulk strains from equation (4) embedded in it is treated as an elastic medium.
The effects of the internal stresses are taken into account by replacing them by surface forces
as shown in figure 6. The magnitudes and points of action of the forces are given in table 4.
The displacements caused by a surface force are given by (Landau and Lifshitz 1986)

ux = 1 + σ

2π E

{[
xz

r3
− (1 − 2σ)x

r(r + z)

]
Fz +

2(1 − σ)r + z

r(r + z)
Fx +

[2r(σr + z) + z2]x

r3(r + z)2
(x Fx + y Fy)

}

uy = 1 + σ

2π E

{[
yz

r3
− (1 − 2σ)y

r(r + z)

]
Fz +

2(1 − σ)r + z

r(r + z)
Fx

+
[2r(σr + z) + z2]y

r3(r + z)2
(x Fx + y Fy)

}

uz = 1 + σ

2π E

{[
z2

r3
− 2(1 − σ)

r

]
Fz +

[
1 − 2σ

r(r + z)
+

z

r3

]
(x Fx + y Fy)

}
.

(8)

To first order there is a positive σ22 surface force at the domain wall. This is modelled by a
number of forces acting perpendicular to the surface. In the first domain wall shown in figure 6
this force causes an increase in the magnitude of the shear strain close to the surface (i.e. a
widening of the domain wall). The reduction of the shear strain results in a positive (σ11 + σ22)
stress at the surface, which is modelled by two lateral forces on either side of the domain
wall. Similarly in the second domain wall shown, the first order force causes a reduction in
the magnitude of the shear strain close to the surface, making the domain wall narrower. This
increase in the magnitude of the shear strain causes a negative (σ11 + σ22) surface stress, again
modelled by two lateral forces. The magnitudes and points of action of the forces used are
shown in figure 6 and table 4.

The resulting strain profile for the first domain wall is given in figures 7(a)–(c). Similarly
the strain profiles for the second wall are given in figures 7(d)–(f). These pictures show a
number of similarities to those observed in the numerical calculations. In particular the form
of ε12 close to both surfaces is reproduced. The calculated form of ε22 is also very close to the
form found numerically. The reproduction of the form of ε11 is not quite so good. Although



7910 W T Lee et al
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Figure 7. Strains resulting from the surface forces shown in figure 5.

the domain walls show asymmetry it is not quite as large as that seen in the numerical work.
Overall, however, the qualitative agreement is good.

4. Conclusions

The effect of the domain wall pressure on the surface structure of a domain wall has not been
taken into account in previous models. Its effect is to make the surface structure of the domain
wall asymmetric: a domain wall’s structure on two opposite sides of a crystal will not be the
same.
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